Hamiltonian cycles and paths in Cayley graphs and digraphs - A survey

نویسندگان

  • Stephen J. Curran
  • Joseph A. Gallian
چکیده

Cayley graphs arise naturally in computer science, in the study of word-hyperbolic groups and automatic groups, in change-ringing, in creating Escher-like repeating patterns in the hyperbolic plane, and in combinatorial designs. Moreover, Babai has shown that all graphs can be realized as an induced subgraph of a Cayley graph of any sufficiently large group. Since the 1984 survey of results on hamiltonian cycles and paths in Cayley graphs by Witte and Gallian, many advances have been made. In this paper we chronicle these results and include some open problems and conjectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cayley graph associated to a semihypergroup

The purpose of this paper is the study of Cayley graph associated to a semihypergroup(or hypergroup). In this regards first  we associate a Cayley graph to every semihypergroup and then we study theproperties of this graph, such as  Hamiltonian cycles in this  graph.  Also, by some of examples we will illustrate  the properties and behavior of  these Cayley  graphs, in particulars we show that ...

متن کامل

2-generated Cayley digraphs on nilpotent groups have hamiltonian paths

Suppose G is a nilpotent, finite group. We show that if {a, b} is any 2-element generating set of G, then the corresponding Cayley digraph −−→ Cay(G; a, b) has a hamiltonian path. This implies that all of the connected Cayley graphs of valence ≤ 4 on G have hamiltonian paths.

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

Hamilton cycles and paths in vertex-transitive graphs - Current directions

In this article current directions in solving Lovász’s problem about the existence of Hamilton cycles and paths in connected vertex-transitive graphs are given. © 2009 Elsevier B.V. All rights reserved. 1. Historical motivation In 1969, Lovász [59] asked whether every finite connected vertex-transitive graph has a Hamilton path, that is, a simple path going through all vertices, thus tying toge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 156  شماره 

صفحات  -

تاریخ انتشار 1996